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Abstract 83 

Hardware/Server Virtualization is a key feature of data centers used for cloud computing services 84 
and enterprise computing that enables ubiquitous access to shared system resources. Server 85 
virtualization is typically performed by a hypervisor, which provides mechanisms to abstract 86 
hardware and system resources from an operating system. Hypervisors are large pieces of software 87 
with several thousand lines of code and are therefore known to have vulnerabilities. This document 88 
analyzes the recent vulnerabilities associated with two open-source hypervisors—Xen and 89 
KVM—as reported by the National Institute of Standards and Technology’s (NIST) National 90 
Vulnerability Database (NVD), and develops a profile of those vulnerabilities in terms of 91 
hypervisor functionality, attack type, and attack source. Based on the predominant number of 92 
vulnerabilities in a hypervisor functionality (attack vector), two sample attacks using those attack 93 
vectors were launched to exploit those vulnerabilities, and the associated system calls were logged. 94 
The objective was to determine the evidence coverage for detecting and reconstructing those 95 
attacks and identify techniques required to gather missing evidence.  96 
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Executive Summary 109 

Hypervisors provide the mechanism that both creates and runs multiple operating systems (also 110 
called guest virtual machines) on a single physical platform (a host) in cloud environments. The 111 
increasing popularity of cloud services and the complex nature of hypervisors, which are 112 
essentially large software modules, have led to malicious attackers exploiting hypervisor 113 
vulnerabilities in order to attack cloud services. To discover recent trends in hypervisor attacks 114 
and prevent future hypervisor exploitation, recent vulnerability reports associated with two popular 115 
open-source hypervisors in the NIST National Vulnerability Database (NIST-NVD), Xen and 116 
KVM, were analyzed and classified based on the hypervisor functionalities (attack vector), attack 117 
type and attack source. 118 

Ten functionalities traditionally provided by hypervisors re considered for the classification of 119 
hypervisor vulnerabilities. These functionalities include: (1) virtual CPUs, (2) symmetric 120 
multiprocessing, (3) soft memory management unit, (4) interrupt and timer mechanisms, (5) I/O 121 
and networking, (6) paravirtualized I/O, (7) VM exits, (8) hypercalls, (9) VM management and 122 
remote management software, and (10) hypervisor Add-ons. Based on functionalities, the 123 
vulnerability profile reveals that most attacks were caused by vulnerabilities in the soft memory 124 
management unit and I/O and networking functionalities. It also reveals that two most common 125 
hypervisor attacks are denial-of-service (DoS) and privilege escalation attacks launched primarily 126 
by guest OS users. Using vulnerabilities related to the hypervisor functionality of the soft memory 127 
management unit, two sample attacks were launched to obtain the evidence needed to perform 128 
forensic analysis on hypervisor attacks in which corresponding system calls were captured. The 129 
objective was to determine the evidence coverage for detecting and reconstructing those attacks 130 
and identify techniques required to gather missing evidence. A close analysis of these system calls 131 
reveals that more evidence regarding the execution path for the attacks is found in the run-time 132 
memory. 133 

The methodology outlined in this document can assist cloud providers in enhancing the security 134 
of their virtualized infrastructure, help cloud service customers discover recent hypervisor attack 135 
trends, identify information that reveals the presence of such attacks, and provide guidance on 136 
taking proactive steps to prevent those attacks in the operating environment. 137 

138 
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1 Introduction 160 

Most cloud services are provided in a virtualized environment. Since virtualization of all system 161 
resources—including processors, memory, and I/O devices—makes it possible to run multiple 162 
operating systems on a single physical platform (host), virtualization is a key feature of cloud 163 
computing that enables ubiquitous access to shared pools of system resources and high-level 164 
services provisioned with minimal management effort [1, 2]. An Operating System (OS) directly 165 
controls hardware resources in a non-virtualized system, but virtualization, typically performed by 166 
a hypervisor (also called a virtual machine monitor or VMM) [3] within a cloud environment, 167 
provides a mechanism that abstracts the hardware and system resources from an OS. As a software 168 
layer that lies between the physical hardware and the Virtual Machines (VMs or guest machines), 169 
a hypervisor supports the guest machines by presenting the guest OSs with a virtual operating 170 
platform and managing their execution. 171 

However, hypervisors are large pieces of software with many lines of code and known 172 
vulnerabilities [4]. While there is published research dedicated to characterizing and assessing 173 
hypervisor vulnerabilities as well as detecting and forensically analyzing the corresponding attacks 174 
[4-8], there is no formal framework for conducting forensic analysis on popular hypervisors, such 175 
as KVM and XEN. Motivated by the work presented in [4], which characterized hypervisor 176 
vulnerabilities as of July 2012 with the objective of preventing their exploitation, this document 177 
considers the recent vulnerability reports associated with Xen and KVM in the NIST National 178 
Vulnerability Database (NIST-NVD). The objective is to discover recent trends in hypervisor 179 
attacks, provide suggestions for mitigating hypervisor attack risks, and identify evidence of those 180 
attacks. The main contributions are as follows: (1) all recent hypervisor vulnerabilities of Xen and 181 
KVM (from years of 2016 and 2017) in NIST-NVD were analyzed and classified based on the 182 
hypervisor functionalities, the attack types, and the sources of attacks; (2) classifications of the 183 
recent Xen and KVM hypervisor vulnerabilities can provide suggestions for mitigating potential 184 
hypervisor attacks and enhancing the hypervisor resilience against known hypervisor 185 
vulnerabilities; (3) some sample attacks were simulated to show the methodology of determining 186 
the forensic data for detecting hypervisor attacks. 187 

The rest of the publication is organized as follows. Section 2 presents the background of 188 
hypervisors and discusses related work. Section 3 lists typical hypervisor functionalities and shows 189 
analysis of the recent two-year hypervisor vulnerabilities listed in NIST-NVD. Section 4 describes 190 
the sample attacks and the forensic evidence used for reconstructing the sample attacks. Section 5 191 
provides conclusions. 192 
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2 Background and Related Work 193 

This section provides an outline of the architectures of the two open-source hypervisors and 194 
discusses related work in the area of cloud forensic analysis. 195 

2.1 Hypervisors 196 

Hypervisors are software and/or firmware modules that virtualize system resources such as CPU, 197 
memory, and devices. In [9], Popek and Goldberg classify hypervisors as Type 1 hypervisor and 198 
Type 2 hypervisor. Type 1 hypervisors run directly on the host’s hardware to control the hardware 199 
and manage guest operating systems (Guest OS). For this reason, Type 1 hypervisors are 200 
sometimes called bare metal hypervisors and include Xen, Microsoft Hyper-V, and VMware 201 
ESX/ESXi. Type 2 hypervisors are similar to other computer programs that run on an OS as a 202 
process. VMware Player, VirtualBox, Parallels Desktop for Mac, and QEMU are Type 2 203 
hypervisors. Some systems have features of both. For example, Linux's Kernel-based Virtual 204 
Machine (KVM) is a kernel module that effectively converts the host OS to a Type 1 hypervisor 205 
but is also categorized as a Type 2 hypervisor because Linux distributions are still general-purpose 206 
OSs with other applications competing for VM resources [10]. 207 

According to the 2015 State of Hyperconverged Infrastructure Market Report by ActualTech 208 
media [23], there are four popular hypervisors: Microsoft Hyper-V, VMware VSphere/ESX, Citrix 209 
XenServer/Xen, and KVM. Since Microsoft Hyper-V and VMware VSphere/ESX are commercial 210 
products, this document and research focus on the vulnerabilities on two widely used open-source 211 
hypervisors, Xen and KVM. Their architectures are briefly discussed below. 212 

2.1.1 Xen 213 

Figure 1 shows the architecture of Xen. In this design, the Xen hypervisor manages three kinds of 214 
VMs including the control domain (also called Dom0) and guest domains (also called DomU) that 215 
support two different virtualization modes: Paravirtualization (PV) and Hardware-assisted 216 
Virtualization (HVM) [11]. Dom0 is the initial domain started by the Xen hypervisor on booting 217 
up a privileged domain that plays the administrator role and supplies services for DomU VMs. For 218 
the two kinds of DomU guests, PV is a highly efficient and lightweight virtualization technology 219 
introduced by XEN in which Xen PV does not require virtualization extensions from the host 220 
hardware. Thus, PV enables virtualization on hardware architectures that do not support HVM, 221 
but it requires PV-enabled kernels and PV drivers to power a high performance virtual server. 222 
HVM requires hardware extensions, and Xen typically uses QEMU (Quick Emulator), a generic 223 
hardware emulator [15], for simulating PC hardware (e.g., CPU, BIOS, IDE, VGA, network cards, 224 
and USBs). Because of the use of simulation technologies, HVM VMs' performance is inferior to 225 
PV VMs. Xen 4.4 provides a new virtualization mode named PVH. PVH guests are lightweight 226 
HVM-like guests that use virtualization extensions in the host hardware. Unlike HVM guests, 227 
instead of using QEMU to emulate devices, PVH guests use PV drivers for I/O and native OS 228 
interfaces for virtualized timers, virtualized interrupts, and a boot. PVH guests require PVH-229 
enabled guest OS [11].  230 
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2.1.2 KVM 231 

In the open-source hypervisor projects, the Kernel-based Virtual Machine (KVM) is a relatively 232 
new product which was first introduced in 2006 and soon merged into the Linux kernel (2.6.20). 233 
KVM is a full virtualization solution for Linux on x86 hardware containing virtualization 234 
extensions (Intel VT or AMD-V) where VMs run as normal Linux processes [12]. Figure 2 shows 235 
the KVM architecture, in which the KVM module uses QEMU to create guest VMs running as 236 
separate user processes. Because KVM is installed on top of the host OS, it is considered a Type 237 
2 hypervisor. However, KVM kernel module turns Linux kernel into a Type 1 bare-metal 238 
hypervisor, providing the power and functionality of even the most complex and powerful Type 1 239 
hypervisors. 240 

 241 

Figure 1: The Xen architecture 242 

2.2 Related Work 243 

Hypervisor attacks are categorized as external attacks and defined as exploits of the hypervisor's 244 
vulnerabilities which allow attackers to gain accessibility and authorization over the hypervisors 245 
[13]. In support of hypervisor defense, Perez-Botero et al. characterized Xen and KVM 246 
vulnerabilities based on hypervisor functionalities in 2012 [4]. However, these cannot be used to 247 
predict recent attack trends. To assess the weakness, severity scores, and attack impacts, 248 
Thongthua et al. assessed the vulnerabilities of widely used hypervisors, including VMware ESXi, 249 
Citrix XenServer, and KVM, using the NIST 800-115 security testing framework and performed 250 
some sample experiments [5]. In an effort to develop hypervisor forensic methods, researchers 251 
discussed the attacks on hypervisors, their forensic mechanisms and challenges [8], and leveraged 252 
existing memory forensic techniques to perform forensic analysis on hypervisor attacks [7]. 253 

 254 
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 255 

Figure 2: The KVM architecture 256 
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3 Deriving a Profile of Hypervisor Vulnerabilities 257 

As a prelude to developing a methodology for determining forensic data requirements for detecting 258 
hypervisor attacks, it is necessary to derive a profile of recent hypervisor vulnerabilities in terms 259 
of the following classification criteria: 260 

• Hypervisor Functionality where the vulnerability exists (attack vector) 261 
• Attack Type (impact of the attack by exploiting the vulnerability) 262 
• Attack Source (the component in the hypervisor platform from which the attack is 263 

launched) 264 

The approach adopted for deriving the vulnerability profile involved obtaining all vulnerabilities 265 
(tagged with CVE numbers) in two open-source hypervisors (Xen and KVM) from the NIST-NVD 266 
for years 2016 and 2017. The hypervisor functionality (attack vector) was then associated with the 267 
attack type (impact) that resulted from exploiting each vulnerability and the attack source based 268 
on the description of vulnerabilities in that database. The total number of vulnerabilities for the 269 
two chosen open-source hypervisors in each of the three categories (attack vector, attack type, and 270 
attack source) thus provided a recent vulnerability profile for those hypervisor offerings. 271 

A brief description of the information sources that were used and the steps adopted as part of the 272 
approach for deriving the vulnerability profile is given in sections 3.1, 3.2, and 3.3.  273 

3.1 The Vulnerabilities in the NIST-NVD 274 

The NIST-NVD is the U.S. government repository of standards-based vulnerability management 275 
data and includes databases of security checklist references, security-related software flaws, 276 
misconfigurations, product names, and impact metrics [14]. A search of the NIST-NVD for the 277 
vulnerabilities posted during the years 2016 and 2017 revealed 83 Xen hypervisor vulnerabilities 278 
and 20 KVM hypervisor vulnerabilities. These vulnerabilities were then associated with the 279 
following: 280 

• Hypervisor functionality where the vulnerability arises 281 
• Potential attack type 282 
• Attack source (i.e., the component/associated user from which the potential attack can 283 

be launched) 284 

3.2 Associating Hypervisor Functionalities with Vulnerabilities 285 

To better understand different hypervisor vulnerabilities, Perez-Botero et al. considered 11 286 
functionalities that a traditional hypervisor provides and mapped vulnerabilities to them [4]. These 287 
functionalities include:  288 

1) Virtual CPUs (vCPU) 289 
2) Symmetric Multiprocessing (VSMP) 290 
3) Soft Memory Management Unit (MMU) 291 
4) I/O and Networking 292 
5) Paravirtualized I/O 293 
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6) Interrupt and Timer mechanisms 294 
7) Hypercalls 295 
8) VMExit 296 
9) VM Management 297 
10) Remote Management Software  298 
11) Hypervisor Add-ons 299 

Based on the common function provided by numbers four and five above, these were merged into 300 
a single functionality. (A detailed description of all these functionalities can be found in Appendix 301 
A). All reported Xen and KVM vulnerabilities during the years 2016 and 2017 were mapped to 302 
these hypervisor functionalities based on the approach in [4]. A brief description of a sample 303 
vulnerability associated with each functionality is given in Table 1 below: 304 

Table 1: A sample vulnerability for each hypervisor functionality 305 

Hypervisor 
Functionality Sample Vulnerability 

vCPU 

CVE-2017-10923 is an example of vCPU vulnerability in which Xen 
through 4.8.x does not validate a vCPU array index upon sending a 
software generated interrupt(SGI), which allows a guest OS user to cause a 
denial-of-service(DoS) attack, finally resulting in crashing the hypervisor. 

VSMP NONE 

Soft MMU 

An example of soft MMU vulnerability is CVE-2017-17565, which existed 
up to Xen version 4.9.x. Due to an incorrect assertion related to M2P, this 
vulnerability allows a paravirtualized guest OS user to cause a DoS attack 
when both the shadow mode and log-dirty mode are set up and working. 

I/O and 
Networking 

CVE-2017-15589 is an example of an I/O and networking vulnerability 
discovered in Xen versions through 4.9.x which allows x86 HVM guest OS 
users to obtain sensitive information from the host OS (or an arbitrary guest 
OS). In these versions of Xen, at least one write path was found wherein the 
data that had been stored in an internal structure could contain bits from an 
uninitialized hypervisor stack slot. A subsequent emulated read would 
retrieve these bits. 

Interrupt/Timer 

CVE-2018-7542 is an example of an interrupt/timer vulnerability caused by 
leveraging the mishandling of configurations that lack a local APIC. It was 
discovered in Xen 4.8.x through 4.10.x. This vulnerability allows an x86 
PVH guest OS user to cause a DoS attack (a NULL pointer dereference and 
hypervisor crash). 

Hypercalls 

An example of hypercall vulnerability is CVE-2017-8903, which is 
reported through Xen 4.8.x on 64-bit platforms that might allow a PV guest 
OS user to execute arbitrary code on the host OS by mishandling page 
tables after an IRET hypercall. 
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Hypervisor 
Functionality Sample Vulnerability 

VMExit 

The exploit on VM Exit-handling code usually leads to a DoS attack. An 
example of VMExit vulnerability is CVE-2017-2596, in which the 
“nested_vmx_check_vmptr” function in arch/x86/kvm/vmx.c in the Linux 
kernel through 4.9.8 improperly emulates the VMXON instruction that puts 
the processor in VMX root mode. This then allows a KVM L1 guest OS 
user to cause a DoS attack (the host OS memory consumption) by 
leveraging the mishandling of page references. 

VM Management 

The exploit of the management functionality may allow a host compromise. 
An example of VM management functionality vulnerability is CVE-2016-
5302. When a deployment has been upgraded from an earlier release, 
XenServer 7.0 before the vendor's Hot x XS70E003 may allow a remote 
attacker on the management network to compromise a host by leveraging 
credentials for an active directory account. 

Remote 
Management 
Software 

NONE 

Hypervisor 
Add-ons 

CVE-2016-0749 is an example vulnerability of hypervisor add-ons. By 
leveraging the smartcard interaction in SPICE as KVM add-ons, a remote 
attacker can cause a DoS attack (QEMU-KVM process crash) or possibly 
execute arbitrary code via vectors related to connecting to a guest VM, 
which triggers a heap-based buffer overflow. 

3.3 Deriving the Hypervisor Vulnerability Profile 306 

With the goal of deriving the hypervisor security vulnerability profile, 83 Xen and 20 KVM 307 
vulnerabilities listed in the NIST-NVD for the years 2016 and 2017 were analyzed and classified 308 
according to functionalities, attack types (impacts), and attack sources. 309 

Table 2: The vulnerabilities of Xen and KVM classified by functionality 310 

Number Hypervisor Functionality Xen KVM 

1 vCPU 6 (7%) 4 (20%) 

2 VSMP 0 (0%) 0 (0%) 

3 Soft MMU 34 (40%) 5 (25%) 

4 I/O and Networking 

24 (29%) 
Five are fully-

virtualized; 19 are 
paravirtualized; none are 

direct access or self-
virtualized. 

4 (20%) 
All are fully-
virtualized. 

5 Interrupt/Timer 7 (8%) 3 (15%) 
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Number Hypervisor Functionality Xen KVM 

6 Hypercalls 3 (4%) 1 (5%) 

7 VMExit 1 (1%) 2 (10%) 

8 VM Management 8 (10%) 0 (0%) 

9 Remote Management Software 0 (0%) 0 (0%) 

10 Hypervisor Add-ons 0 (0%) 1 (5%) 

Classifications based on the hypervisor functionalities are shown in Table 2. With the exception 311 
of the two functionalities of virtual symmetric multiprocessing and remote management software, 312 
all functionalities were reported as having vulnerabilities. The number of vulnerabilities and the 313 
percentages within each hypervisor offering are listed. The table reveals that there are more 314 
reported Xen vulnerabilities than KVM, which can be attributed to a broader user base for Xen. 315 
Furthermore, approximately 69% of the vulnerabilities in Xen and 45% of the vulnerabilities in 316 
KVM are concentrated in two functionalities—Soft MMU and I/O and Networking. A detailed 317 
reading of CVE reports reveals that these vulnerabilities primarily originated in page tables and 318 
I/O grant table emulation. Additionally, the vulnerabilities based on the I/O and Networking 319 
functionality were also associated with each of the four types of I/O virtualization: (1) fully 320 
virtualized devices, (2) paravirtualized devices, (3) direct access devices, and (4) self-virtualized 321 
devices. Table 2 shows that most of the I/O and networking vulnerabilities in Xen came from 322 
paravirtualized devices, while all I/O and networking vulnerabilities in KVM came from fully-323 
virtualized devices. This is due to the fact that in most Xen deployments, I/O and networking 324 
functionality is configured using a paravirtualized device, while in KVM, that functionality is 325 
configured using a fully virtualized device. 326 

Table 3: The types of attacks caused by Xen and KVM vulnerabilities 327 

Type of Attack Xen KVM 

Denial-of-service (DoS) 48 (four have other 
impacts) (44%) 

17 (three have other 
impacts) (63%) 

Privilege escalation 33 (16 have other 
impacts) (30%) 

3 (two have other 
impacts) (11%) 

Information leakage 15 (five have other 
impacts) (14%) 5 (19%) 

Arbitrary code execution 8 (two have other 
impacts) (7%) 

2 (all have other impacts) 
(7%) 

Reading/modifying/deleting a file 3 (3%) 0 (0%) 

Others including compromising a 
host, canceling other administrators’ 
operations and corrupting data 

3 (3%) 0 (0%) 
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Classifications based on the attack types and the sources of attacks are listed in Table 3 and 328 
Table 4. Table 3 reveals that the most common attack was DoS (44% for Xen and 63% for 329 
KVM), indicating that attacking cloud services' availability has been the most serious cloud 330 
security problem. The other top attacks were privilege escalation (30% for Xen and 11% for 331 
KVM), information leakage (14% for Xen and 19% for KVM), and arbitrary code execution (7% 332 
for Xen and 7% for KVM). Although each of these three attacks occurs with less frequency than 333 
a DoS attack, they all result in more serious damage by allowing attackers to obtain sensitive 334 
user information or compromise the hosts or guest VMs. Table 4 shows that the greatest source 335 
of all attacks was guest OS users (76% for Xen and 85% for KVM), though other sources 336 
included cloud administrators, guest OS administrators, and remote users. This suggests that 337 
cloud providers must closely monitor guest users' activities in order to reduce attack risks. 338 

Table 4: Attack Sources and Number of Exploits 339 

Source of Attack Xen KVM 

Administrator 2 (Management) (2%) 0 (0%) 

Guest OS administrator 17 (including HVM and PV 
administrators) (20%) 1 (5%) 

Guest OS user 63 (including ARM, X86, HVM 
and PV users) (76%) 

17 (including KVM L1, L2, and 
privileged users) (85%) 

Remote attacker 1 (1%) 1 (including an authenticated 
remote guest user) (5%) 

Host OS user 0 (0%) 1 (5%) 
 340 
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4 Sample Attacks and Forensic Analysis 341 

Since numerous vulnerabilities are related to Xen soft MMU functionality, this section will show 342 
two sample attacks, including those that exploit vulnerabilities CVE-2017-7228 and CVE-2016-343 
6258, to demonstrate how the evidence for detecting and reconstructing hypervisor attacks is 344 
determined. 345 

4.1 The Two Sample Attacks 346 

As presented in Section 2.1.1., the Xen hypervisor manages three kinds of VMs, including the 347 
control domain (also called Dom0) and guest domains (also called DomU). These then support 348 
two different virtualization modes: Paravirtualization (PV) and Hardware-assisted Virtualization 349 
(HVM). The PV module has been widely utilized for its higher performance [25]. However, 350 
because the Xen PV model uses complex code to emulate the MMU, it introduces many 351 
vulnerabilities, such as CVE-2017-7228 and CVE-2016-6258. 352 

Known by Xen as XSA-212, CVE-2017-7228 was first reported by Jann Horn of Google’s Project 353 
Zero in 2017 [20]. Horn discovered that this vulnerability in X86 64 bit Xen (including 4.8.x, 4.7.x, 354 
4.6.x, 4.5.x, and 4.4.x versions) was caused by an insufficient check on the function 355 
“XENMEM_exchange”, which allows the PV guest user as the function caller to access hypervisor 356 
memory outside of the PV guest VM’s provisioned memory. Therefore, a malicious 64-bit PV 357 
guest who can make a hypercall “HYPERVISOR_memory_op” function to invoke the 358 
“XENMEM_exchange” function may be able to access all of a system’s memory, allowing for 359 
VM escape (the process of breaking out of a guest VM and interacting with the hypervisor’s host 360 
operating system) from DomU to Dom0, hypervisor host crash, and information leakage. With 361 
these attacks, the PV guest from “attacker” (the green terminal) could execute commands like 362 
“qvm-run victim firefox" to open a Firefox web-browser in “victim” guest VM, which can only be 363 
executed by Dom0 as shown in Figure 3. 364 

CVE-2016-6258 is also known as XSA-182, which was reported by Jeremie Boutoille from 365 
Quarklab in 2016 [21]. In the PV module, page tables are used to map pseudo-physical/physical 366 
addresses seen by the guest VM to the underlying memory of the machine. Since there is a 367 
vulnerability in XEN PV page tables that allows updates to be made to pre-existing page table 368 
entries, the malicious PV guests can access the page directory with an updated write privilege to 369 
execute the VM escape, breaking out of DomU to control Dom 0. 370 

Both types of attacks were launched on the PV module configured in Qubes 3.1 with Xen 4.6 [22]. 371 
As illustrated in Figure 3, the attacker impersonating the PV guest root user could execute a 372 
command, “qvm-run victim firefox,” that can only be executed by Dom0 to open the victim PV 373 
guest’s Firefox web browser. Both attacks allowed the PV guest users to gain the control of Dom0.  374 
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 375 

Figure 3: CVE-2017-7228 and CVE-2016-6258 Attacks 376 

4.2 Identifying Evidence Coverage for Forensic Analysis 377 

Both attacks used vulnerabilities related to hypercalls and soft MMU in Xen in addition to using 378 
Xen’s device activity logs. The affected processes’ runtime syscalls were therefore logged to 379 
perform a forensic analysis. As an example, Appendix B illustrates the syscalls obtained by using 380 
the “strace” Linux command on the running “attack” program of CVE-2017-7228. Analysis of the 381 
device activity logs and runtime syscalls showed the relevant evidence originated from the syscalls 382 
captured from the attackers’ VMs. Despite the noise among syscalls that can be found in most 383 
programs, other syscalls revealed that the attack program injected a loadable kernel module into 384 
the kernel space which exploited the vulnerability to control the Dom0. This then opened the 385 
Firefox browser in the victim’s guest VM.  386 

Evidence acquisition plays an important role in forensic analysis by determining and 387 
reconstructing attacks. As presented in a previous work which illustrated the use of a layered 388 
graphical framework to reconstruct attack scenarios [24], relevant evidence was identified and 389 
collected to reconstruct the corresponding attack path(s) representing the attack scenarios. During 390 
this process, an attack path with missing attack steps led to the collection of additional supporting 391 
evidence. An analysis of the syscalls captured for two sample attacks revealed that while the 392 
syscalls obtained using “strace” Linux command were useful for forensic analysis, they lacked 393 



NISTIR 8221 (DRAFT)  DETERMINING FORENSIC DATA REQUIREMENTS 
  FOR DETECTING HYPERVISOR ATTACKS 

17 

attack details and had the following deficiencies: (1) the syscalls did not provide details of how 394 
features of the loadable kernel module used Xen’s memory management to launch the attack; and 395 
(2) the syscalls were collected from the attacker’s guest VM, which could easily be tampered with 396 
or removed by the attacker. The VM introspection technique and corresponding memory analysis 397 
tools are therefore recommended to obtain more supporting and admissible evidence from the run-398 
time memory.   399 

4.3 Use of Virtual Machine Introspection (VMI) for Forensics 400 

The VMI is a process that allows for the external viewing of the state of a VM, either from a 401 
privilege VM or VMM itself. The state information includes CPU state (e.g., registers), all 402 
memory, and all I/O device states such as the contents of storage devices or register states of I/O 403 
controllers. Leveraging this capability, VMI-based applications can be built to perform forensic 404 
analysis in the following ways: 405 
  406 

1. The VMI-based application can capture the entire memory and I/O state of a VM that is 407 
suspected of being compromised or attacked by taking a checkpoint (taking a snapshot). 408 
The captured state of the running VM under observation can be compared to either: (a) a 409 
suspended VM in a known good state or (b) the original VM image from which the running 410 
VM was instantiated. [26]. 411 

2. A VMI-based application can be built to perform execution path analysis on the monitored 412 
VM. This is achieved by tracing—analyzing the sequence of VM activities and the 413 
corresponding complete VM state (e.g., memory map, IO access). This aids in the 414 
construction a detailed attack graph with the VM state as nodes and the VM activities as 415 
edges, thereby tracing the path through which the current compromised state was reached 416 
[27]. This approach addresses deficiencies in performing forensic analysis that simply uses 417 
the system calls from the compromised VMs as follows: 418 

• There is the possibility that syscalls/hypercalls from the compromised VM could 419 
be tampered with or entirely removed by the attacker. In this approach, the sequence 420 
of VM states and VM activities are captured from outside the compromised VM, 421 
thus eliminating this possibility. 422 

• All variables that characterize a VM state and a VM activity are captured, helping 423 
to reconstruct the attack details based on memory access information with the 424 
ability to detect even malicious attacks, such as code and data modification. 425 

 426 
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5 Conclusions 427 

An analysis of all reported vulnerabilities on Xen and KVM in the last two years was conducted, 428 
and two sample attacks were launched to identify evidence for a forensic analysis. Data 429 
subsequently showed that most attacks on the two hypervisors were caused by vulnerabilities that 430 
existed in soft MMU and I/O and Networking functionalities. The two most common hypervisor 431 
attacks were DoS and privilege escalation attacks. Most attackers are guest OS users. The collected 432 
evidence on the sample attacks showed that most valuable evidence remains in the run-time system 433 
memory. Therefore, to obtain valuable evidence with guaranteed integrity, VM introspection 434 
technique and secure logging systems showing memory access should be implemented and used. 435 
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Appendix A—Description of Hypervisor Functionality 436 

Virtual CPUs (vCPU): A vCPU, also known as a virtual processor, abstracts a portion or share 437 
of a physical CPU that is assigned to a virtual machine (VM). The hypervisor uses a portion of the 438 
physical CPU cycle and allocates it to a vCPU assigned to a VM. The hypervisor schedules vCPU 439 
tasks to the physical CPUs. 440 

Virtual Symmetric Multiprocessing (VSMP): VSMP is a method of symmetric multiprocessing 441 
(SMP), which enables multiple vCPU belonging to the same VM to be scheduled to a physical 442 
CPU that has at least two logical processors. 443 

Soft Memory Management Unit (Soft MMU): The Memory Management Unit (MMU) is the 444 
hardware responsible for managing memory by translating the virtual addresses manipulated by 445 
the software into physical addresses. In an OS running on bare metal, the MMU translates the 446 
virtual addresses manipulated by the software into physical addresses. The mappings from virtual 447 
to physical addresses are kept in page tables (PT) and managed by the OS. In a virtualized 448 
environment, the hypervisor emulates the MMU (therefore called the soft MMU) for the guest 449 
OSs. This is done by mapping what the guest OS sees as physical memory (often called pseudo-450 
physical/physical address in Xen) to the underlying memory of the machine (called machine 451 
addresses in Xen). The mapping table from the physical address to machine address (P2M) is 452 
typically maintained in the hypervisor and hidden from the guest OS by using a shadow page table 453 
for each guest VM. Each shadow page table mapping translates virtual addresses of programs in a 454 
guest VM to guest (pseudo) physical addresses and is placed in the guest OS [16, 17]. The Xen 455 
paravirtualized MMU model requires that the guest OS be directly aware of mapping between 456 
(pseudo) physical and machine addresses (the P2M table). Additionally, in order to read page table 457 
entries that contain machine addresses and convert them back into (pseudo) physical addresses, a 458 
translation from machine to (pseudo) physical addresses provided by the M2P table is required in 459 
Xen paravirtualized MMU model [17]. 460 

I/O and Networking:  There are three common approaches that provide I/O services to guest 461 
VMs. Using the Xen I/O structures illustrated in Figure 4 as an example, these common approaches 462 
include:  463 

(1) the hypervisor emulates a known I/O device in a fully virtualized system, and the guests 464 
use an unmodified driver (called a native driver) to interact with it (illustrated as “Native 465 
Driver 1” in DomU to “Device Model” in Dom0  in Figure 4);  466 
(2) a paravirtual driver (known as a front-end driver) in a paravirtualized system is installed 467 
in the modified guest OS in DomU, which uses shared-memory—asynchronous buffer-468 
descriptor rings—to communicate with the back-end I/O driver in the hypervisor 469 
(illustrated as “Front-end Driver” in DomU to “Back-end Driver” to Dom0 in Figure 4); 470 
(3) the host assigns a device (known as a pass-through device) directly to the guest VM 471 
(illustrated as “Native Driver 2” in DomU to “Pass-through Device” in Figure 4).   472 

To reduce I/O virtualization overhead, improve virtual machine performance, and provide I/O 473 
services to guest VMs, scalable self-virtualizing I/O devices that allow direct access interface to 474 
multiple VMs are also used. However, the two approaches do not virtualize the I/O since they 475 
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include direct access, and self-virtualized I/O devices allow the device driver within a guest OS to 476 
interact with the hardware directly. Furthermore, they scale poorly due to challenges, performance, 477 
and cost [22]. 478 

 479 

Figure 4: Xen I/O structures 480 

In paravirtualized Xen systems, the front-end and back-end drivers communicate with each other 481 
using two producer-consumer ring buffers (standard lockless shared memory data structures built 482 
on grant tables and event channels), where one is used for packet reception and the other is used 483 
for packet transmission. Though hypervisors enforce isolation across VMs residing within a single 484 
physical machine, the grant mechanism provides inter-domain communications in Xen, allowing 485 
shared-memory communications between unprivileged domains by using grant tables [16]. Grant 486 
tables are used to protect the I/O buffer in a guest domain's memory and share the I/O buffer with 487 
Dom0 properly, which underpin the split device drivers for block and network I/O. Each domain 488 
has its own grant table that allows the domain to inform Xen with the kind of permissions other 489 
domains have on their pages. KVM typically uses Virtio, a virtualization standard for network and 490 
disk drivers, which is architecturally similar to Xen paravirtualized device drivers which are 491 
composed of front-end drivers and back-end drivers.   492 

Interrupt/Timer: Hypervisors should be able to virtualize and manage interrupts/timers [18], the 493 
interrupt/timer controller of the guest OS, and the guest OS’s access to the controller. The 494 
interrupt/timer mechanism in a hypervisor includes a programmable interval timer (PIT), the 495 
advanced programmable interrupt controller (APIC), and the interrupt request (IRQ) mechanisms 496 
[4]. 497 

Hypercall: Hypercalls are similar to system calls (syscalls) that provide user-space applications 498 
with kernel-level operations. They are performed using the syscall instruction with up to six 499 
arguments passed in registers. A hypercall layer is commonly available and allows guest OSs to 500 
make requests of the host OS. Domains will use hypercalls to request privileged operations such 501 
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as updating page tables from the hypervisors. Thus, an attacker can use hypercalls to attack the 502 
hypervisor from a guest VM.  503 

VMExit: According to Belay at el. [19], the mode change from Virtual Machine Extension (VMX) 504 
root mode to VMX non-root mode is called VMEntry, and the mode change from VMX non-root 505 
mode to VMX root mode is called VMExit. VM exits are a response to some instructions and 506 
events (e.g., page fault) from guest VMs and are the main cause of performance degradation in a 507 
virtualized system. These events could include external interrupts, triple faults, task switches, I/O 508 
operation instructions (e.g., INB, OUTB), and accesses to control registers. 509 

VM management functionality: Hypervisors support basic VM management functionalities, 510 
including starting, pausing, or stopping VMs. These tasks are implemented in Xen Dom0 and 511 
KVM's libvirt driver. 512 

Remote Management Software: Remote management software is employed as a user-friendly 513 
interface that connects directly to the hypervisor in order to provide additional management and 514 
monitoring tools. With an intuitive user interfaces that visualizes the status of a system, the remote 515 
management software allows administrators to tweak or manage the virtualized environment. 516 

Add-ons: The add-ons of hypervisors use modular designs to add extended functions. By 517 
leveraging the interaction between the add-ons and hypervisors, an attacker can cause a host to 518 
crash (a DoS attack) or even compromise the host.  519 
 520 
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Appendix B—The Syscalls Intercepted from the Attacking Program 521 

The syscalls in this appendix were obtained by employing Linux command “strace” on the running 522 
attack program using the vulnerability CVE-2017-7228 (the attack program is named “attack”). 523 
These syscalls show: (1) the attacker executed the attack program with arguments aimed at the 524 
victim guest VM (Line 1); (2) the attack program and required Linux libraries have been loaded 525 
to the memory for the program execution (Line 2 to Line 16); (3) the memory pages of the attack 526 
program have been protected from accessed by other processes (Line 17 to Line 23); and (4) the 527 
attack program injected a loadable Linux module named “test.ko” to the kernel space to exploit 528 
the vulnerability (Line 24 to Line 31).   529 

1. execve("./attack", ["./attack", "qvm-run victim firework"], [/* 30 vars */]) = 0 530 
2. brk(NULL)                               = 0x8cd000 531 
3. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 532 

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a3022000 533 
4. access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory) 534 
5. open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3 535 
6. fstat(3, {st_mode=S_IFREG|0644, st_size=74105, ...}) = 0 536 
7. mmap(NULL, 74105, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fa3a300f000 537 
8. close(3)                                = 0 538 
9. open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3 539 
10. read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\240\6\2\0\0\0\0\0"..., 832) = 832 540 
11. fstat(3, {st_mode=S_IFREG|0755, st_size=2104216, ...}) = 0 541 
12. mmap(NULL, 3934688, PROT_READ|PROT_EXEC, 542 

MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fa3a2a42000 543 
13. mprotect(0x7fa3a2bf9000, 2097152, PROT_NONE) = 0 544 
14. mmap(0x7fa3a2df9000, 24576, PROT_READ|PROT_WRITE, 545 

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1b7000) = 0x7fa3a2df9000 546 
15. mmap(0x7fa3a2dff000, 14816, PROT_READ|PROT_WRITE, 547 

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7fa3a2dff000 548 
16. close(3)                                = 0 549 
17. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 550 

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300e000 551 
18. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 552 

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300d000 553 
19. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 554 

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300c000 555 
20. arch_prctl(ARCH_SET_FS, 0x7fa3a300d700) = 0 556 
21. mprotect(0x7fa3a2df9000, 16384, PROT_READ) = 0 557 
22. mprotect(0x600000, 4096, PROT_READ)     = 0 558 
23. mprotect(0x7fa3a3023000, 4096, PROT_READ) = 0 559 
24. munmap(0x7fa3a300f000, 74105)           = 0 560 
25. open("test.ko", O_RDONLY)               = 3 561 
26. finit_module(3, "user_shellcmd_addr=1407334317317"..., 0) = 0 562 
27. fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0 563 
28. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 564 

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a3021000 565 
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29. mmap(0x600000000000, 4096, PROT_READ|PROT_WRITE, 566 
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_LOCKED, -1, 0) = 567 
0x600000000000 568 

30. delete_module("test", O_NONBLOCK)       = 0 569 
31. exit_group(0)                           = ? 570 

 571 
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