
Draft NISTIR 8221 1

2

A Methodology for Determining 3

Forensic Data Requirements for 4

Detecting Hypervisor Attacks 5
6
7
8
9

10

Ramaswamy Chandramouli
Anoop Singhal

Duminda Wijesekera
Changwei Liu 11

12
13

Draft NISTIR 8221 14

15

A Methodology for Determining 16

Forensic Data Requirements for 17

Detecting Hypervisor Attacks 18

19
20
21
22
23
24

Ramaswamy Chandramouli
Anoop Singhal

Duminda Wijesekera
Changwei Liu

Computer Security Division
Information Technology Laboratory 25

26
27
28
29
30
31
32
33
34
35

September 2018 36
37

38
39
40

U.S. Department of Commerce 41
Wilbur L. Ross, Jr., Secretary 42

43
National Institute of Standards and Technology 44

Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology 45

46
National Institute of Standards and Technology Internal Report 8221 47

27 pages (September 2018) 48
49
50

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 51
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 52
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 53
available for the purpose. 54
There may be references in this publication to other publications currently under development by NIST in accordance 55
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 56
may be used by federal agencies even before the completion of such companion publications. Thus, until each 57
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 58
planning and transition purposes, federal agencies may wish to closely follow the development of these new 59
publications by NIST. 60
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 61
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 62
https://csrc.nist.gov/publications.63

64
65
66
67
68
69
70

Public comment period: September 21, 2018 through October 12, 2018

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930
Email: NISTIR8221@nist.gov

All comments are subject to release under the Freedom of Information Act (FOIA). 71

72

https://csrc.nist.gov/publications
mailto:NISTIR8221@nist.gov?subject=Comment%20on%20Draft%20NISTIR%208221

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
FOR DETECTING HYPERVISOR ATTACKS

ii

Reports on Computer Systems Technology 73
74

The Information Technology Laboratory (ITL) at the National Institute of Standards and 75
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 76
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 77
methods, reference data, proof-of-concept implementations, and technical analyses to advance the 78
development and productive use of information technology. ITL’s responsibilities include the 79
development of management, administrative, technical, and physical standards and guidelines for 80
the cost-effective security and privacy of other than national security-related information in federal 81
information systems. 82

Abstract 83

Hardware/Server Virtualization is a key feature of data centers used for cloud computing services 84
and enterprise computing that enables ubiquitous access to shared system resources. Server 85
virtualization is typically performed by a hypervisor, which provides mechanisms to abstract 86
hardware and system resources from an operating system. Hypervisors are large pieces of software 87
with several thousand lines of code and are therefore known to have vulnerabilities. This document 88
analyzes the recent vulnerabilities associated with two open-source hypervisors—Xen and 89
KVM—as reported by the National Institute of Standards and Technology’s (NIST) National 90
Vulnerability Database (NVD), and develops a profile of those vulnerabilities in terms of 91
hypervisor functionality, attack type, and attack source. Based on the predominant number of 92
vulnerabilities in a hypervisor functionality (attack vector), two sample attacks using those attack 93
vectors were launched to exploit those vulnerabilities, and the associated system calls were logged. 94
The objective was to determine the evidence coverage for detecting and reconstructing those 95
attacks and identify techniques required to gather missing evidence. 96

Keywords 97

cloud computing; forensic analysis; hypervisors; KVM; vulnerabilities; Xen 98

99

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
FOR DETECTING HYPERVISOR ATTACKS

iii

100
Acknowledgments 101

The authors thank Ms. Isabel Van Wyk for her valuable editorial review. 102

Audience 103
The target audience for this document includes security staff and Chief Information Security 104
Officers (CISO) in virtualized infrastructures used for enterprise computing needs or for offering 105
cloud services. 106

Trademark Information 107

All registered trademarks or trademarks belong to their respective organizations. 108

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
FOR DETECTING HYPERVISOR ATTACKS

iv

Executive Summary 109

Hypervisors provide the mechanism that both creates and runs multiple operating systems (also 110
called guest virtual machines) on a single physical platform (a host) in cloud environments. The 111
increasing popularity of cloud services and the complex nature of hypervisors, which are 112
essentially large software modules, have led to malicious attackers exploiting hypervisor 113
vulnerabilities in order to attack cloud services. To discover recent trends in hypervisor attacks 114
and prevent future hypervisor exploitation, recent vulnerability reports associated with two popular 115
open-source hypervisors in the NIST National Vulnerability Database (NIST-NVD), Xen and 116
KVM, were analyzed and classified based on the hypervisor functionalities (attack vector), attack 117
type and attack source. 118

Ten functionalities traditionally provided by hypervisors re considered for the classification of 119
hypervisor vulnerabilities. These functionalities include: (1) virtual CPUs, (2) symmetric 120
multiprocessing, (3) soft memory management unit, (4) interrupt and timer mechanisms, (5) I/O 121
and networking, (6) paravirtualized I/O, (7) VM exits, (8) hypercalls, (9) VM management and 122
remote management software, and (10) hypervisor Add-ons. Based on functionalities, the 123
vulnerability profile reveals that most attacks were caused by vulnerabilities in the soft memory 124
management unit and I/O and networking functionalities. It also reveals that two most common 125
hypervisor attacks are denial-of-service (DoS) and privilege escalation attacks launched primarily 126
by guest OS users. Using vulnerabilities related to the hypervisor functionality of the soft memory 127
management unit, two sample attacks were launched to obtain the evidence needed to perform 128
forensic analysis on hypervisor attacks in which corresponding system calls were captured. The 129
objective was to determine the evidence coverage for detecting and reconstructing those attacks 130
and identify techniques required to gather missing evidence. A close analysis of these system calls 131
reveals that more evidence regarding the execution path for the attacks is found in the run-time 132
memory. 133

The methodology outlined in this document can assist cloud providers in enhancing the security 134
of their virtualized infrastructure, help cloud service customers discover recent hypervisor attack 135
trends, identify information that reveals the presence of such attacks, and provide guidance on 136
taking proactive steps to prevent those attacks in the operating environment. 137

138

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

v

Table of Contents 139

Executive Summary ... iv 140
1 Introduction .. 6 141
2 Background and Related Work ... 7 142

2.1 Hypervisors ... 7 143
2.1.1 Xen ... 7 144
2.1.2 KVM ... 8 145

2.2 Related Work .. 8 146
3 Deriving a Profile of Hypervisor Vulnerabilities .. 10 147

3.1 The Vulnerabilities in the NIST-NVD ... 10 148
3.2 Associating Hypervisor Functionalities with Vulnerabilities 10 149
3.3 Deriving the Hypervisor Vulnerability Profile ... 12 150

4 Sample Attacks and Forensic Analysis ... 15 151
4.1 The Two Sample Attacks .. 15 152
4.2 Identifying Evidence Coverage for Forensic Analysis 16 153
4.3 Use of Virtual Machine Introspection (VMI) for Forensics 17 154

5 Conclusions.. 18 155
Appendix A— Description of Hypervisor Functionality ... 19 156
Appendix B— The Syscalls Intercepted from the Attacking Program 22 157
Appendix C— References .. 24 158
 159

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

6

1 Introduction 160

Most cloud services are provided in a virtualized environment. Since virtualization of all system 161
resources—including processors, memory, and I/O devices—makes it possible to run multiple 162
operating systems on a single physical platform (host), virtualization is a key feature of cloud 163
computing that enables ubiquitous access to shared pools of system resources and high-level 164
services provisioned with minimal management effort [1, 2]. An Operating System (OS) directly 165
controls hardware resources in a non-virtualized system, but virtualization, typically performed by 166
a hypervisor (also called a virtual machine monitor or VMM) [3] within a cloud environment, 167
provides a mechanism that abstracts the hardware and system resources from an OS. As a software 168
layer that lies between the physical hardware and the Virtual Machines (VMs or guest machines), 169
a hypervisor supports the guest machines by presenting the guest OSs with a virtual operating 170
platform and managing their execution. 171

However, hypervisors are large pieces of software with many lines of code and known 172
vulnerabilities [4]. While there is published research dedicated to characterizing and assessing 173
hypervisor vulnerabilities as well as detecting and forensically analyzing the corresponding attacks 174
[4-8], there is no formal framework for conducting forensic analysis on popular hypervisors, such 175
as KVM and XEN. Motivated by the work presented in [4], which characterized hypervisor 176
vulnerabilities as of July 2012 with the objective of preventing their exploitation, this document 177
considers the recent vulnerability reports associated with Xen and KVM in the NIST National 178
Vulnerability Database (NIST-NVD). The objective is to discover recent trends in hypervisor 179
attacks, provide suggestions for mitigating hypervisor attack risks, and identify evidence of those 180
attacks. The main contributions are as follows: (1) all recent hypervisor vulnerabilities of Xen and 181
KVM (from years of 2016 and 2017) in NIST-NVD were analyzed and classified based on the 182
hypervisor functionalities, the attack types, and the sources of attacks; (2) classifications of the 183
recent Xen and KVM hypervisor vulnerabilities can provide suggestions for mitigating potential 184
hypervisor attacks and enhancing the hypervisor resilience against known hypervisor 185
vulnerabilities; (3) some sample attacks were simulated to show the methodology of determining 186
the forensic data for detecting hypervisor attacks. 187

The rest of the publication is organized as follows. Section 2 presents the background of 188
hypervisors and discusses related work. Section 3 lists typical hypervisor functionalities and shows 189
analysis of the recent two-year hypervisor vulnerabilities listed in NIST-NVD. Section 4 describes 190
the sample attacks and the forensic evidence used for reconstructing the sample attacks. Section 5 191
provides conclusions. 192

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

7

2 Background and Related Work 193

This section provides an outline of the architectures of the two open-source hypervisors and 194
discusses related work in the area of cloud forensic analysis. 195

2.1 Hypervisors 196

Hypervisors are software and/or firmware modules that virtualize system resources such as CPU, 197
memory, and devices. In [9], Popek and Goldberg classify hypervisors as Type 1 hypervisor and 198
Type 2 hypervisor. Type 1 hypervisors run directly on the host’s hardware to control the hardware 199
and manage guest operating systems (Guest OS). For this reason, Type 1 hypervisors are 200
sometimes called bare metal hypervisors and include Xen, Microsoft Hyper-V, and VMware 201
ESX/ESXi. Type 2 hypervisors are similar to other computer programs that run on an OS as a 202
process. VMware Player, VirtualBox, Parallels Desktop for Mac, and QEMU are Type 2 203
hypervisors. Some systems have features of both. For example, Linux's Kernel-based Virtual 204
Machine (KVM) is a kernel module that effectively converts the host OS to a Type 1 hypervisor 205
but is also categorized as a Type 2 hypervisor because Linux distributions are still general-purpose 206
OSs with other applications competing for VM resources [10]. 207

According to the 2015 State of Hyperconverged Infrastructure Market Report by ActualTech 208
media [23], there are four popular hypervisors: Microsoft Hyper-V, VMware VSphere/ESX, Citrix 209
XenServer/Xen, and KVM. Since Microsoft Hyper-V and VMware VSphere/ESX are commercial 210
products, this document and research focus on the vulnerabilities on two widely used open-source 211
hypervisors, Xen and KVM. Their architectures are briefly discussed below. 212

2.1.1 Xen 213

Figure 1 shows the architecture of Xen. In this design, the Xen hypervisor manages three kinds of 214
VMs including the control domain (also called Dom0) and guest domains (also called DomU) that 215
support two different virtualization modes: Paravirtualization (PV) and Hardware-assisted 216
Virtualization (HVM) [11]. Dom0 is the initial domain started by the Xen hypervisor on booting 217
up a privileged domain that plays the administrator role and supplies services for DomU VMs. For 218
the two kinds of DomU guests, PV is a highly efficient and lightweight virtualization technology 219
introduced by XEN in which Xen PV does not require virtualization extensions from the host 220
hardware. Thus, PV enables virtualization on hardware architectures that do not support HVM, 221
but it requires PV-enabled kernels and PV drivers to power a high performance virtual server. 222
HVM requires hardware extensions, and Xen typically uses QEMU (Quick Emulator), a generic 223
hardware emulator [15], for simulating PC hardware (e.g., CPU, BIOS, IDE, VGA, network cards, 224
and USBs). Because of the use of simulation technologies, HVM VMs' performance is inferior to 225
PV VMs. Xen 4.4 provides a new virtualization mode named PVH. PVH guests are lightweight 226
HVM-like guests that use virtualization extensions in the host hardware. Unlike HVM guests, 227
instead of using QEMU to emulate devices, PVH guests use PV drivers for I/O and native OS 228
interfaces for virtualized timers, virtualized interrupts, and a boot. PVH guests require PVH-229
enabled guest OS [11]. 230

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

8

2.1.2 KVM 231

In the open-source hypervisor projects, the Kernel-based Virtual Machine (KVM) is a relatively 232
new product which was first introduced in 2006 and soon merged into the Linux kernel (2.6.20). 233
KVM is a full virtualization solution for Linux on x86 hardware containing virtualization 234
extensions (Intel VT or AMD-V) where VMs run as normal Linux processes [12]. Figure 2 shows 235
the KVM architecture, in which the KVM module uses QEMU to create guest VMs running as 236
separate user processes. Because KVM is installed on top of the host OS, it is considered a Type 237
2 hypervisor. However, KVM kernel module turns Linux kernel into a Type 1 bare-metal 238
hypervisor, providing the power and functionality of even the most complex and powerful Type 1 239
hypervisors. 240

 241

Figure 1: The Xen architecture 242

2.2 Related Work 243

Hypervisor attacks are categorized as external attacks and defined as exploits of the hypervisor's 244
vulnerabilities which allow attackers to gain accessibility and authorization over the hypervisors 245
[13]. In support of hypervisor defense, Perez-Botero et al. characterized Xen and KVM 246
vulnerabilities based on hypervisor functionalities in 2012 [4]. However, these cannot be used to 247
predict recent attack trends. To assess the weakness, severity scores, and attack impacts, 248
Thongthua et al. assessed the vulnerabilities of widely used hypervisors, including VMware ESXi, 249
Citrix XenServer, and KVM, using the NIST 800-115 security testing framework and performed 250
some sample experiments [5]. In an effort to develop hypervisor forensic methods, researchers 251
discussed the attacks on hypervisors, their forensic mechanisms and challenges [8], and leveraged 252
existing memory forensic techniques to perform forensic analysis on hypervisor attacks [7]. 253

 254

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

9

 255

Figure 2: The KVM architecture 256

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

10

3 Deriving a Profile of Hypervisor Vulnerabilities 257

As a prelude to developing a methodology for determining forensic data requirements for detecting 258
hypervisor attacks, it is necessary to derive a profile of recent hypervisor vulnerabilities in terms 259
of the following classification criteria: 260

• Hypervisor Functionality where the vulnerability exists (attack vector) 261
• Attack Type (impact of the attack by exploiting the vulnerability) 262
• Attack Source (the component in the hypervisor platform from which the attack is 263

launched) 264

The approach adopted for deriving the vulnerability profile involved obtaining all vulnerabilities 265
(tagged with CVE numbers) in two open-source hypervisors (Xen and KVM) from the NIST-NVD 266
for years 2016 and 2017. The hypervisor functionality (attack vector) was then associated with the 267
attack type (impact) that resulted from exploiting each vulnerability and the attack source based 268
on the description of vulnerabilities in that database. The total number of vulnerabilities for the 269
two chosen open-source hypervisors in each of the three categories (attack vector, attack type, and 270
attack source) thus provided a recent vulnerability profile for those hypervisor offerings. 271

A brief description of the information sources that were used and the steps adopted as part of the 272
approach for deriving the vulnerability profile is given in sections 3.1, 3.2, and 3.3. 273

3.1 The Vulnerabilities in the NIST-NVD 274

The NIST-NVD is the U.S. government repository of standards-based vulnerability management 275
data and includes databases of security checklist references, security-related software flaws, 276
misconfigurations, product names, and impact metrics [14]. A search of the NIST-NVD for the 277
vulnerabilities posted during the years 2016 and 2017 revealed 83 Xen hypervisor vulnerabilities 278
and 20 KVM hypervisor vulnerabilities. These vulnerabilities were then associated with the 279
following: 280

• Hypervisor functionality where the vulnerability arises 281
• Potential attack type 282
• Attack source (i.e., the component/associated user from which the potential attack can 283

be launched) 284

3.2 Associating Hypervisor Functionalities with Vulnerabilities 285

To better understand different hypervisor vulnerabilities, Perez-Botero et al. considered 11 286
functionalities that a traditional hypervisor provides and mapped vulnerabilities to them [4]. These 287
functionalities include: 288

1) Virtual CPUs (vCPU) 289
2) Symmetric Multiprocessing (VSMP) 290
3) Soft Memory Management Unit (MMU) 291
4) I/O and Networking 292
5) Paravirtualized I/O 293

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

11

6) Interrupt and Timer mechanisms 294
7) Hypercalls 295
8) VMExit 296
9) VM Management 297
10) Remote Management Software 298
11) Hypervisor Add-ons 299

Based on the common function provided by numbers four and five above, these were merged into 300
a single functionality. (A detailed description of all these functionalities can be found in Appendix 301
A). All reported Xen and KVM vulnerabilities during the years 2016 and 2017 were mapped to 302
these hypervisor functionalities based on the approach in [4]. A brief description of a sample 303
vulnerability associated with each functionality is given in Table 1 below: 304

Table 1: A sample vulnerability for each hypervisor functionality 305

Hypervisor
Functionality Sample Vulnerability

vCPU

CVE-2017-10923 is an example of vCPU vulnerability in which Xen
through 4.8.x does not validate a vCPU array index upon sending a
software generated interrupt(SGI), which allows a guest OS user to cause a
denial-of-service(DoS) attack, finally resulting in crashing the hypervisor.

VSMP NONE

Soft MMU

An example of soft MMU vulnerability is CVE-2017-17565, which existed
up to Xen version 4.9.x. Due to an incorrect assertion related to M2P, this
vulnerability allows a paravirtualized guest OS user to cause a DoS attack
when both the shadow mode and log-dirty mode are set up and working.

I/O and
Networking

CVE-2017-15589 is an example of an I/O and networking vulnerability
discovered in Xen versions through 4.9.x which allows x86 HVM guest OS
users to obtain sensitive information from the host OS (or an arbitrary guest
OS). In these versions of Xen, at least one write path was found wherein the
data that had been stored in an internal structure could contain bits from an
uninitialized hypervisor stack slot. A subsequent emulated read would
retrieve these bits.

Interrupt/Timer

CVE-2018-7542 is an example of an interrupt/timer vulnerability caused by
leveraging the mishandling of configurations that lack a local APIC. It was
discovered in Xen 4.8.x through 4.10.x. This vulnerability allows an x86
PVH guest OS user to cause a DoS attack (a NULL pointer dereference and
hypervisor crash).

Hypercalls

An example of hypercall vulnerability is CVE-2017-8903, which is
reported through Xen 4.8.x on 64-bit platforms that might allow a PV guest
OS user to execute arbitrary code on the host OS by mishandling page
tables after an IRET hypercall.

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

12

Hypervisor
Functionality Sample Vulnerability

VMExit

The exploit on VM Exit-handling code usually leads to a DoS attack. An
example of VMExit vulnerability is CVE-2017-2596, in which the
“nested_vmx_check_vmptr” function in arch/x86/kvm/vmx.c in the Linux
kernel through 4.9.8 improperly emulates the VMXON instruction that puts
the processor in VMX root mode. This then allows a KVM L1 guest OS
user to cause a DoS attack (the host OS memory consumption) by
leveraging the mishandling of page references.

VM Management

The exploit of the management functionality may allow a host compromise.
An example of VM management functionality vulnerability is CVE-2016-
5302. When a deployment has been upgraded from an earlier release,
XenServer 7.0 before the vendor's Hot x XS70E003 may allow a remote
attacker on the management network to compromise a host by leveraging
credentials for an active directory account.

Remote
Management
Software

NONE

Hypervisor
Add-ons

CVE-2016-0749 is an example vulnerability of hypervisor add-ons. By
leveraging the smartcard interaction in SPICE as KVM add-ons, a remote
attacker can cause a DoS attack (QEMU-KVM process crash) or possibly
execute arbitrary code via vectors related to connecting to a guest VM,
which triggers a heap-based buffer overflow.

3.3 Deriving the Hypervisor Vulnerability Profile 306

With the goal of deriving the hypervisor security vulnerability profile, 83 Xen and 20 KVM 307
vulnerabilities listed in the NIST-NVD for the years 2016 and 2017 were analyzed and classified 308
according to functionalities, attack types (impacts), and attack sources. 309

Table 2: The vulnerabilities of Xen and KVM classified by functionality 310

Number Hypervisor Functionality Xen KVM

1 vCPU 6 (7%) 4 (20%)

2 VSMP 0 (0%) 0 (0%)

3 Soft MMU 34 (40%) 5 (25%)

4 I/O and Networking

24 (29%)
Five are fully-

virtualized; 19 are
paravirtualized; none are

direct access or self-
virtualized.

4 (20%)
All are fully-
virtualized.

5 Interrupt/Timer 7 (8%) 3 (15%)

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

13

Number Hypervisor Functionality Xen KVM

6 Hypercalls 3 (4%) 1 (5%)

7 VMExit 1 (1%) 2 (10%)

8 VM Management 8 (10%) 0 (0%)

9 Remote Management Software 0 (0%) 0 (0%)

10 Hypervisor Add-ons 0 (0%) 1 (5%)

Classifications based on the hypervisor functionalities are shown in Table 2. With the exception 311
of the two functionalities of virtual symmetric multiprocessing and remote management software, 312
all functionalities were reported as having vulnerabilities. The number of vulnerabilities and the 313
percentages within each hypervisor offering are listed. The table reveals that there are more 314
reported Xen vulnerabilities than KVM, which can be attributed to a broader user base for Xen. 315
Furthermore, approximately 69% of the vulnerabilities in Xen and 45% of the vulnerabilities in 316
KVM are concentrated in two functionalities—Soft MMU and I/O and Networking. A detailed 317
reading of CVE reports reveals that these vulnerabilities primarily originated in page tables and 318
I/O grant table emulation. Additionally, the vulnerabilities based on the I/O and Networking 319
functionality were also associated with each of the four types of I/O virtualization: (1) fully 320
virtualized devices, (2) paravirtualized devices, (3) direct access devices, and (4) self-virtualized 321
devices. Table 2 shows that most of the I/O and networking vulnerabilities in Xen came from 322
paravirtualized devices, while all I/O and networking vulnerabilities in KVM came from fully-323
virtualized devices. This is due to the fact that in most Xen deployments, I/O and networking 324
functionality is configured using a paravirtualized device, while in KVM, that functionality is 325
configured using a fully virtualized device. 326

Table 3: The types of attacks caused by Xen and KVM vulnerabilities 327

Type of Attack Xen KVM

Denial-of-service (DoS) 48 (four have other
impacts) (44%)

17 (three have other
impacts) (63%)

Privilege escalation 33 (16 have other
impacts) (30%)

3 (two have other
impacts) (11%)

Information leakage 15 (five have other
impacts) (14%) 5 (19%)

Arbitrary code execution 8 (two have other
impacts) (7%)

2 (all have other impacts)
(7%)

Reading/modifying/deleting a file 3 (3%) 0 (0%)

Others including compromising a
host, canceling other administrators’
operations and corrupting data

3 (3%) 0 (0%)

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

14

Classifications based on the attack types and the sources of attacks are listed in Table 3 and 328
Table 4. Table 3 reveals that the most common attack was DoS (44% for Xen and 63% for 329
KVM), indicating that attacking cloud services' availability has been the most serious cloud 330
security problem. The other top attacks were privilege escalation (30% for Xen and 11% for 331
KVM), information leakage (14% for Xen and 19% for KVM), and arbitrary code execution (7% 332
for Xen and 7% for KVM). Although each of these three attacks occurs with less frequency than 333
a DoS attack, they all result in more serious damage by allowing attackers to obtain sensitive 334
user information or compromise the hosts or guest VMs. Table 4 shows that the greatest source 335
of all attacks was guest OS users (76% for Xen and 85% for KVM), though other sources 336
included cloud administrators, guest OS administrators, and remote users. This suggests that 337
cloud providers must closely monitor guest users' activities in order to reduce attack risks. 338

Table 4: Attack Sources and Number of Exploits 339

Source of Attack Xen KVM

Administrator 2 (Management) (2%) 0 (0%)

Guest OS administrator 17 (including HVM and PV
administrators) (20%) 1 (5%)

Guest OS user 63 (including ARM, X86, HVM
and PV users) (76%)

17 (including KVM L1, L2, and
privileged users) (85%)

Remote attacker 1 (1%) 1 (including an authenticated
remote guest user) (5%)

Host OS user 0 (0%) 1 (5%)
 340

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

15

4 Sample Attacks and Forensic Analysis 341

Since numerous vulnerabilities are related to Xen soft MMU functionality, this section will show 342
two sample attacks, including those that exploit vulnerabilities CVE-2017-7228 and CVE-2016-343
6258, to demonstrate how the evidence for detecting and reconstructing hypervisor attacks is 344
determined. 345

4.1 The Two Sample Attacks 346

As presented in Section 2.1.1., the Xen hypervisor manages three kinds of VMs, including the 347
control domain (also called Dom0) and guest domains (also called DomU). These then support 348
two different virtualization modes: Paravirtualization (PV) and Hardware-assisted Virtualization 349
(HVM). The PV module has been widely utilized for its higher performance [25]. However, 350
because the Xen PV model uses complex code to emulate the MMU, it introduces many 351
vulnerabilities, such as CVE-2017-7228 and CVE-2016-6258. 352

Known by Xen as XSA-212, CVE-2017-7228 was first reported by Jann Horn of Google’s Project 353
Zero in 2017 [20]. Horn discovered that this vulnerability in X86 64 bit Xen (including 4.8.x, 4.7.x, 354
4.6.x, 4.5.x, and 4.4.x versions) was caused by an insufficient check on the function 355
“XENMEM_exchange”, which allows the PV guest user as the function caller to access hypervisor 356
memory outside of the PV guest VM’s provisioned memory. Therefore, a malicious 64-bit PV 357
guest who can make a hypercall “HYPERVISOR_memory_op” function to invoke the 358
“XENMEM_exchange” function may be able to access all of a system’s memory, allowing for 359
VM escape (the process of breaking out of a guest VM and interacting with the hypervisor’s host 360
operating system) from DomU to Dom0, hypervisor host crash, and information leakage. With 361
these attacks, the PV guest from “attacker” (the green terminal) could execute commands like 362
“qvm-run victim firefox" to open a Firefox web-browser in “victim” guest VM, which can only be 363
executed by Dom0 as shown in Figure 3. 364

CVE-2016-6258 is also known as XSA-182, which was reported by Jeremie Boutoille from 365
Quarklab in 2016 [21]. In the PV module, page tables are used to map pseudo-physical/physical 366
addresses seen by the guest VM to the underlying memory of the machine. Since there is a 367
vulnerability in XEN PV page tables that allows updates to be made to pre-existing page table 368
entries, the malicious PV guests can access the page directory with an updated write privilege to 369
execute the VM escape, breaking out of DomU to control Dom 0. 370

Both types of attacks were launched on the PV module configured in Qubes 3.1 with Xen 4.6 [22]. 371
As illustrated in Figure 3, the attacker impersonating the PV guest root user could execute a 372
command, “qvm-run victim firefox,” that can only be executed by Dom0 to open the victim PV 373
guest’s Firefox web browser. Both attacks allowed the PV guest users to gain the control of Dom0. 374

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

16

 375

Figure 3: CVE-2017-7228 and CVE-2016-6258 Attacks 376

4.2 Identifying Evidence Coverage for Forensic Analysis 377

Both attacks used vulnerabilities related to hypercalls and soft MMU in Xen in addition to using 378
Xen’s device activity logs. The affected processes’ runtime syscalls were therefore logged to 379
perform a forensic analysis. As an example, Appendix B illustrates the syscalls obtained by using 380
the “strace” Linux command on the running “attack” program of CVE-2017-7228. Analysis of the 381
device activity logs and runtime syscalls showed the relevant evidence originated from the syscalls 382
captured from the attackers’ VMs. Despite the noise among syscalls that can be found in most 383
programs, other syscalls revealed that the attack program injected a loadable kernel module into 384
the kernel space which exploited the vulnerability to control the Dom0. This then opened the 385
Firefox browser in the victim’s guest VM. 386

Evidence acquisition plays an important role in forensic analysis by determining and 387
reconstructing attacks. As presented in a previous work which illustrated the use of a layered 388
graphical framework to reconstruct attack scenarios [24], relevant evidence was identified and 389
collected to reconstruct the corresponding attack path(s) representing the attack scenarios. During 390
this process, an attack path with missing attack steps led to the collection of additional supporting 391
evidence. An analysis of the syscalls captured for two sample attacks revealed that while the 392
syscalls obtained using “strace” Linux command were useful for forensic analysis, they lacked 393

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

17

attack details and had the following deficiencies: (1) the syscalls did not provide details of how 394
features of the loadable kernel module used Xen’s memory management to launch the attack; and 395
(2) the syscalls were collected from the attacker’s guest VM, which could easily be tampered with 396
or removed by the attacker. The VM introspection technique and corresponding memory analysis 397
tools are therefore recommended to obtain more supporting and admissible evidence from the run-398
time memory. 399

4.3 Use of Virtual Machine Introspection (VMI) for Forensics 400

The VMI is a process that allows for the external viewing of the state of a VM, either from a 401
privilege VM or VMM itself. The state information includes CPU state (e.g., registers), all 402
memory, and all I/O device states such as the contents of storage devices or register states of I/O 403
controllers. Leveraging this capability, VMI-based applications can be built to perform forensic 404
analysis in the following ways: 405
 406

1. The VMI-based application can capture the entire memory and I/O state of a VM that is 407
suspected of being compromised or attacked by taking a checkpoint (taking a snapshot). 408
The captured state of the running VM under observation can be compared to either: (a) a 409
suspended VM in a known good state or (b) the original VM image from which the running 410
VM was instantiated. [26]. 411

2. A VMI-based application can be built to perform execution path analysis on the monitored 412
VM. This is achieved by tracing—analyzing the sequence of VM activities and the 413
corresponding complete VM state (e.g., memory map, IO access). This aids in the 414
construction a detailed attack graph with the VM state as nodes and the VM activities as 415
edges, thereby tracing the path through which the current compromised state was reached 416
[27]. This approach addresses deficiencies in performing forensic analysis that simply uses 417
the system calls from the compromised VMs as follows: 418

• There is the possibility that syscalls/hypercalls from the compromised VM could 419
be tampered with or entirely removed by the attacker. In this approach, the sequence 420
of VM states and VM activities are captured from outside the compromised VM, 421
thus eliminating this possibility. 422

• All variables that characterize a VM state and a VM activity are captured, helping 423
to reconstruct the attack details based on memory access information with the 424
ability to detect even malicious attacks, such as code and data modification. 425

 426

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

18

5 Conclusions 427

An analysis of all reported vulnerabilities on Xen and KVM in the last two years was conducted, 428
and two sample attacks were launched to identify evidence for a forensic analysis. Data 429
subsequently showed that most attacks on the two hypervisors were caused by vulnerabilities that 430
existed in soft MMU and I/O and Networking functionalities. The two most common hypervisor 431
attacks were DoS and privilege escalation attacks. Most attackers are guest OS users. The collected 432
evidence on the sample attacks showed that most valuable evidence remains in the run-time system 433
memory. Therefore, to obtain valuable evidence with guaranteed integrity, VM introspection 434
technique and secure logging systems showing memory access should be implemented and used. 435

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

19

Appendix A—Description of Hypervisor Functionality 436

Virtual CPUs (vCPU): A vCPU, also known as a virtual processor, abstracts a portion or share 437
of a physical CPU that is assigned to a virtual machine (VM). The hypervisor uses a portion of the 438
physical CPU cycle and allocates it to a vCPU assigned to a VM. The hypervisor schedules vCPU 439
tasks to the physical CPUs. 440

Virtual Symmetric Multiprocessing (VSMP): VSMP is a method of symmetric multiprocessing 441
(SMP), which enables multiple vCPU belonging to the same VM to be scheduled to a physical 442
CPU that has at least two logical processors. 443

Soft Memory Management Unit (Soft MMU): The Memory Management Unit (MMU) is the 444
hardware responsible for managing memory by translating the virtual addresses manipulated by 445
the software into physical addresses. In an OS running on bare metal, the MMU translates the 446
virtual addresses manipulated by the software into physical addresses. The mappings from virtual 447
to physical addresses are kept in page tables (PT) and managed by the OS. In a virtualized 448
environment, the hypervisor emulates the MMU (therefore called the soft MMU) for the guest 449
OSs. This is done by mapping what the guest OS sees as physical memory (often called pseudo-450
physical/physical address in Xen) to the underlying memory of the machine (called machine 451
addresses in Xen). The mapping table from the physical address to machine address (P2M) is 452
typically maintained in the hypervisor and hidden from the guest OS by using a shadow page table 453
for each guest VM. Each shadow page table mapping translates virtual addresses of programs in a 454
guest VM to guest (pseudo) physical addresses and is placed in the guest OS [16, 17]. The Xen 455
paravirtualized MMU model requires that the guest OS be directly aware of mapping between 456
(pseudo) physical and machine addresses (the P2M table). Additionally, in order to read page table 457
entries that contain machine addresses and convert them back into (pseudo) physical addresses, a 458
translation from machine to (pseudo) physical addresses provided by the M2P table is required in 459
Xen paravirtualized MMU model [17]. 460

I/O and Networking: There are three common approaches that provide I/O services to guest 461
VMs. Using the Xen I/O structures illustrated in Figure 4 as an example, these common approaches 462
include: 463

(1) the hypervisor emulates a known I/O device in a fully virtualized system, and the guests 464
use an unmodified driver (called a native driver) to interact with it (illustrated as “Native 465
Driver 1” in DomU to “Device Model” in Dom0 in Figure 4); 466
(2) a paravirtual driver (known as a front-end driver) in a paravirtualized system is installed 467
in the modified guest OS in DomU, which uses shared-memory—asynchronous buffer-468
descriptor rings—to communicate with the back-end I/O driver in the hypervisor 469
(illustrated as “Front-end Driver” in DomU to “Back-end Driver” to Dom0 in Figure 4); 470
(3) the host assigns a device (known as a pass-through device) directly to the guest VM 471
(illustrated as “Native Driver 2” in DomU to “Pass-through Device” in Figure 4). 472

To reduce I/O virtualization overhead, improve virtual machine performance, and provide I/O 473
services to guest VMs, scalable self-virtualizing I/O devices that allow direct access interface to 474
multiple VMs are also used. However, the two approaches do not virtualize the I/O since they 475

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

20

include direct access, and self-virtualized I/O devices allow the device driver within a guest OS to 476
interact with the hardware directly. Furthermore, they scale poorly due to challenges, performance, 477
and cost [22]. 478

 479

Figure 4: Xen I/O structures 480

In paravirtualized Xen systems, the front-end and back-end drivers communicate with each other 481
using two producer-consumer ring buffers (standard lockless shared memory data structures built 482
on grant tables and event channels), where one is used for packet reception and the other is used 483
for packet transmission. Though hypervisors enforce isolation across VMs residing within a single 484
physical machine, the grant mechanism provides inter-domain communications in Xen, allowing 485
shared-memory communications between unprivileged domains by using grant tables [16]. Grant 486
tables are used to protect the I/O buffer in a guest domain's memory and share the I/O buffer with 487
Dom0 properly, which underpin the split device drivers for block and network I/O. Each domain 488
has its own grant table that allows the domain to inform Xen with the kind of permissions other 489
domains have on their pages. KVM typically uses Virtio, a virtualization standard for network and 490
disk drivers, which is architecturally similar to Xen paravirtualized device drivers which are 491
composed of front-end drivers and back-end drivers. 492

Interrupt/Timer: Hypervisors should be able to virtualize and manage interrupts/timers [18], the 493
interrupt/timer controller of the guest OS, and the guest OS’s access to the controller. The 494
interrupt/timer mechanism in a hypervisor includes a programmable interval timer (PIT), the 495
advanced programmable interrupt controller (APIC), and the interrupt request (IRQ) mechanisms 496
[4]. 497

Hypercall: Hypercalls are similar to system calls (syscalls) that provide user-space applications 498
with kernel-level operations. They are performed using the syscall instruction with up to six 499
arguments passed in registers. A hypercall layer is commonly available and allows guest OSs to 500
make requests of the host OS. Domains will use hypercalls to request privileged operations such 501

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

21

as updating page tables from the hypervisors. Thus, an attacker can use hypercalls to attack the 502
hypervisor from a guest VM. 503

VMExit: According to Belay at el. [19], the mode change from Virtual Machine Extension (VMX) 504
root mode to VMX non-root mode is called VMEntry, and the mode change from VMX non-root 505
mode to VMX root mode is called VMExit. VM exits are a response to some instructions and 506
events (e.g., page fault) from guest VMs and are the main cause of performance degradation in a 507
virtualized system. These events could include external interrupts, triple faults, task switches, I/O 508
operation instructions (e.g., INB, OUTB), and accesses to control registers. 509

VM management functionality: Hypervisors support basic VM management functionalities, 510
including starting, pausing, or stopping VMs. These tasks are implemented in Xen Dom0 and 511
KVM's libvirt driver. 512

Remote Management Software: Remote management software is employed as a user-friendly 513
interface that connects directly to the hypervisor in order to provide additional management and 514
monitoring tools. With an intuitive user interfaces that visualizes the status of a system, the remote 515
management software allows administrators to tweak or manage the virtualized environment. 516

Add-ons: The add-ons of hypervisors use modular designs to add extended functions. By 517
leveraging the interaction between the add-ons and hypervisors, an attacker can cause a host to 518
crash (a DoS attack) or even compromise the host. 519
 520

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

22

Appendix B—The Syscalls Intercepted from the Attacking Program 521

The syscalls in this appendix were obtained by employing Linux command “strace” on the running 522
attack program using the vulnerability CVE-2017-7228 (the attack program is named “attack”). 523
These syscalls show: (1) the attacker executed the attack program with arguments aimed at the 524
victim guest VM (Line 1); (2) the attack program and required Linux libraries have been loaded 525
to the memory for the program execution (Line 2 to Line 16); (3) the memory pages of the attack 526
program have been protected from accessed by other processes (Line 17 to Line 23); and (4) the 527
attack program injected a loadable Linux module named “test.ko” to the kernel space to exploit 528
the vulnerability (Line 24 to Line 31). 529

1. execve("./attack", ["./attack", "qvm-run victim firework"], [/* 30 vars */]) = 0 530
2. brk(NULL) = 0x8cd000 531
3. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 532

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a3022000 533
4. access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory) 534
5. open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3 535
6. fstat(3, {st_mode=S_IFREG|0644, st_size=74105, ...}) = 0 536
7. mmap(NULL, 74105, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7fa3a300f000 537
8. close(3) = 0 538
9. open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3 539
10. read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\240\6\2\0\0\0\0\0"..., 832) = 832 540
11. fstat(3, {st_mode=S_IFREG|0755, st_size=2104216, ...}) = 0 541
12. mmap(NULL, 3934688, PROT_READ|PROT_EXEC, 542

MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7fa3a2a42000 543
13. mprotect(0x7fa3a2bf9000, 2097152, PROT_NONE) = 0 544
14. mmap(0x7fa3a2df9000, 24576, PROT_READ|PROT_WRITE, 545

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1b7000) = 0x7fa3a2df9000 546
15. mmap(0x7fa3a2dff000, 14816, PROT_READ|PROT_WRITE, 547

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7fa3a2dff000 548
16. close(3) = 0 549
17. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 550

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300e000 551
18. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 552

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300d000 553
19. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 554

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a300c000 555
20. arch_prctl(ARCH_SET_FS, 0x7fa3a300d700) = 0 556
21. mprotect(0x7fa3a2df9000, 16384, PROT_READ) = 0 557
22. mprotect(0x600000, 4096, PROT_READ) = 0 558
23. mprotect(0x7fa3a3023000, 4096, PROT_READ) = 0 559
24. munmap(0x7fa3a300f000, 74105) = 0 560
25. open("test.ko", O_RDONLY) = 3 561
26. finit_module(3, "user_shellcmd_addr=1407334317317"..., 0) = 0 562
27. fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0 563
28. mmap(NULL, 4096, PROT_READ|PROT_WRITE, 564

MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7fa3a3021000 565

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
 FOR DETECTING HYPERVISOR ATTACKS

23

29. mmap(0x600000000000, 4096, PROT_READ|PROT_WRITE, 566
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_LOCKED, -1, 0) = 567
0x600000000000 568

30. delete_module("test", O_NONBLOCK) = 0 569
31. exit_group(0) = ? 570

 571

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
FOR DETECTING HYPERVISOR ATTACKS

24

Appendix C—References 572

[1] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V. Anderson, S. M.573
Bennett, A. Kagi, F. H. Leung and L. Smith, Intel virtualization technology, Computer, 574
38(5), pp.48-56, 2005. 575

[2] P. Mell and T. Grance, The NIST definition of cloud computing, Communications of the576
ACM, 53(6), p.50, 2010. 577

[3] R. P. Goldberg, Survey of virtual machine research, Computer, 7(6), pp.34-45, 1974.578
[4] D. Perez-Botero, J. Szefer and R. B. Lee, Characterizing hypervisor vulnerabilities in cloud579

computing servers, In Proceedings of the 2013 International Workshop on Security in 580
Cloud Computing (pp. 3-10). ACM, May 2013. 581

[5] A. Thongthua and S. Ngamsuriyaroj, Assessment of hypervisor vulnerabilities, In582
International Conference Cloud Computing Research and Innovations (ICCCRI), pp. 71-583
77, May 2016. 584

[6] J. Szefer, E. Keller, R. B. Lee and J. Rexford, Eliminating the hypervisor attack surface for585
a more secure cloud, In Proceedings of the 18th ACM Conference on Computer and 586
Communications Security (pp. 401-412). ACM, Oct 2011. 587

[7] M. Graziano, A. Lanzi and D. Balzarotti, Hypervisor memory forensics, In International588
Workshop on Recent Advances in Intrusion Detection (pp. 21-40). Springer, Berlin, 589
Heidelberg. 2013. 590

[8] L. M. Joshi, M. Kumar and R. Bharti, Understanding threats in hypervisor, its forensics591
mechanism and its research challenges, International Journal of Computer Applications 592
119.1 (2015). 593

[9] G. J. Popek and R. P. Goldberg, Formal requirements for virtualizable third generation594
architectures, Communications of the ACM 17.7 (1974): 412-421. 595

[10] B. Pariseau, KVM reignites Type 1 vs Type 2 hypervisor debate, retrieved from596
https://searchservervirtualization.techtarget.com/news/2240034817/KVM-reignites-Type-597
1-vs-Type-2-hypervisor-debate on Apr-11-2018.598

[11] Xen project software overview, retrieved from 599
https://wiki.xen.org/wiki/Xen_Project_Software_Overview on Apr-11- 2018. 600

[12] KVM, retrieved from https://www.linux-kvm.org/page/Main_Page on Apr-12-2018.601
[13] J. Shi, Y. Yang and C. Tang, Hardware assisted hypervisor introspection, SpringerPlus,602

vol. 5, no. 1, 2016. 603
[14] NIST National Vulnerability Database, retrieved from https://nvd.nist.gov on Apr-12-604

2018. 605
[15] QEMU--the FAST! processor emulator, retrieved from https://www.qemu.org on Apr-12-606

2008. 607
[16] J.F. Kloster, J. Kristensen and A. Mejlholm, Efficient memory sharing in the Xen virtual608

machine monitor, Department of Computer Science, Aalborg University (Jan. 2006). 609

https://searchservervirtualization.techtarget.com/news/2240034817/KVM-reignites-Type-1-vs-Type-2-hypervisor-debate
https://searchservervirtualization.techtarget.com/news/2240034817/KVM-reignites-Type-1-vs-Type-2-hypervisor-debate
https://wiki.xen.org/wiki/Xen_Project_Software_Overview
https://www.linux-kvm.org/page/Main_Page%20on%20Apr-12-2018
https://nvd.nist.gov/
https://www.qemu.org/

NISTIR 8221 (DRAFT) DETERMINING FORENSIC DATA REQUIREMENTS
FOR DETECTING HYPERVISOR ATTACKS

25

[17] X86 paravirtualised memory management, retrieved from 610
https://wiki.xen.org/wiki/X86_Paravirtualised_Memory_Management. 611

[18] Y. Song, H. Wang and T. Soyata, Hardware and software aspects of VM-based mobile-612
cloud offloading, Enabling Real-Time Mobile Cloud Computing through Emerging 613
Technologies, pp.247-271, 2015. 614

[19] A. Belay, A. Bittau, A. J. Mashtizadeh, D. Terei, D. Mazieres and C. Kozyrakis, Dune:615
safe user-level access to privileged CPU features, October 2012, In Osdi (Vol. 12, pp. 335-616
348). 617

[20] Pandavirtualization: exploiting the Xen hypervisor, Retrieved from618
https://googleprojectzero.blogspot.com/2017/04/pandavirtualization-exploiting-xen.html 619
on May-30-2018. 620

[21] Xen exploitation part 3: XSA-182, Qubes escape, Retrieved from621
https://blog.quarkslab.com/xen-exploitation-part-3-xsa-182-qubes-escape.html. 622

[22] J. Satran, L. Shalev, M. Ben-Yehuda and Z. Machulsky, Scalable I/O-a well-architected623
way to do scalable, secure and virtualized I/O, In Workshop on I/O Virtualization, Dec 624
2008. 625

[23] 2015 state of hyperconverged infrastructure market report, Retrieved from626
https://www.actualtechmedia.com/wp-content/uploads/2015/05/2015-State-of-627
Hyperconverged-Infrastructure-Market-Report.pdf on Aug-3-2018. 628

[24] C. Liu, A. Singhal and D. Wijesekera, A layered graphical model for mission attack impact629
analysis, In Communications and Network Security (CNS), Oct, 2017 IEEE Conference 630
on (pp. 602-609). 631

[25] H. Fayyad-Kazan, L. Perneel and M. Timmerman, Full and para-virtualization with Xen:632
a performance comparison. Journal of Emerging Trends in Computing and Information 633
Sciences, 4(9), 2013. 634

635
636

https://wiki.xen.org/wiki/X86_Paravirtualised_Memory_Management
https://googleprojectzero.blogspot.com/2017/04/pandavirtualization-exploiting-xen.html
https://blog.quarkslab.com/xen-exploitation-part-3-xsa-182-qubes-escape.html
https://blog.quarkslab.com/xen-exploitation-part-3-xsa-182-qubes-escape.html
https://www.actualtechmedia.com/wp-content/uploads/2015/05/2015-State-of-Hyperconverged-Infrastructure-Market-Report.pdf
https://www.actualtechmedia.com/wp-content/uploads/2015/05/2015-State-of-Hyperconverged-Infrastructure-Market-Report.pdf

	Draft NISTIR 8221, A Methodology for Determining Forensic Data Requirements for Detecting Hypervisor Attacks
	Executive Summary
	1 Introduction
	2 Background and Related Work
	2.1 Hypervisors
	2.1.1 Xen
	2.1.2 KVM

	2.2 Related Work

	3 Deriving a Profile of Hypervisor Vulnerabilities
	3.1 The Vulnerabilities in the NIST-NVD
	3.2 Associating Hypervisor Functionalities with Vulnerabilities
	3.3 Deriving the Hypervisor Vulnerability Profile

	4 Sample Attacks and Forensic Analysis
	4.1 The Two Sample Attacks
	4.2 Identifying Evidence Coverage for Forensic Analysis
	4.3 Use of Virtual Machine Introspection (VMI) for Forensics

	5 Conclusions
	Appendix A— Description of Hypervisor Functionality
	Appendix B— The Syscalls Intercepted from the Attacking Program
	Appendix C— References

